Gas Surface Interactions Lab

New journal article!

November 2nd, 2017

A new journal article was recently published in the AIAA Journal of Thermophysics and Heat Transfer:

Thermomechanical analysis of ablative materials is of great importance to the design of thermal-protection systems. A finite volume method for coupling the mechanical and thermal response models for ablation problems is proposed. This method is capable of simulating both transient and static thermomechanical responses. The solver is verified against analytic solutions and through code-to-code comparisons. It is then fully coupled to a state-of-the-art material response code. Coupled results show that high temperature gradients have significant effects on the mechanical performance and stress generation. The magnitude and the location of the stress concentration can play a significant role in structural integrity, and may lead to crack formation as well as spallation.

[1] Fu, R., Weng, H., Wenk, J. F., and Martin, A., “Thermo-mechanical coupling for charring ablators,” Journal of Thermophysics and Heat Transfer, 2017. doi: 10.2514/1.T5194.

UKnow story on KRUPS

August 28th, 2017

Story on the KRUPS project:

New paper in the Int. J. Heat Mass Transfer

August 5th, 2017

A new paper is available:

Martin, A., Zhang, H., and Tagavi, K. A., “An introduction to a systematic derivation of surface balance equations without the excruciating pain,” International Journal of Heat and Mass Transfer, Vol. 115, Part A, December 2017, pp. 992–999.
DOI: 10.1016/j.ijheatmasstransfer.2017.07.078

Analyzing complex fluid flow problems that involve multiple coupled domains, each with their respective set of governing equations, is not a trivial undertaking. Even more complicated is the elaborate and tedious task of specifying the interface and boundary conditions between various domains. This paper provides an elegant, straightforward and universal method that considers the nature of those shared boundaries and derives the appropriate conditions at the interface, irrespective of the governing equations being solved. As a first example, a well-known interface condition is derived using this method. For a second example, the set of boundary conditions necessary to solve a baseline aerothermodynamics coupled plain/porous flow problem is derived. Finally, the method is applied to two more flow configurations, one consisting of an impermeable adiabatic wall and the other an ablating surface.

Four new conference articles

June 14th, 2017

Four new GSIL conferences papers, presented at the AIAA AVIATION 2017 meeting:

[1] Irvan, M. L., Barrow, C., Keen, A., Maddox, J. F., and Martin, A., “Physics Based Modeling of Fibrous High Porosity Insulation Materials Using Comparative Cut-Bar Experimentation,” 24th AIAA Aerodynamic Decelerator Systems Technology Conference, AIAA Paper 2017-3887, Denver, CO, June 2017.
doi: 10.2514/6.2017-3887

[2] Weng, H. and Martin, A., “Development of a Universal Solver and Its Application to Ablation Problems,” 47th AIAA Thermophysics Conference, AIAA Paper 2017-3355, Denver, CO, June 2017.
doi: 10.2514/6.2017-3355

[3] Omidy, A. D., Weng, H., Martin, A., and Gran ̃a-Otero, J. C., “Modeling Gasification of Carbon Fiber Preform in Oxygen-Rich Environments,” 47th AIAA Thermophysics Conference, AIAA Paper 2017-3686, Denver, CO, June 2017.
doi: 10.2514/6.2017-3686

[4] Omidy, A. D., Cooper, J. M., Fu, R., Weng, H., and Martin, A., “Development Of An Open-Source Avcoat Material Database, VISTA,” 47th AIAA Thermophysics Conference, AIAA Paper 2017-3356, Denver, CO, June 2017.
doi: 10.2514/6.2017-3356

New journal article in JCP

May 27th, 2017

New journal article in the Journal of Computational Physics:

This paper presents a new data-driven adaptive computational model for simulating turbulent flow, where partial-but-incomplete measurement data is available. The model automatically adjusts the closure coefficients of the Reynolds-averaged Navier–Stokes (RANS) k–ω turbulence equations to improve agreement between the simulated flow and the measurements. This data-driven adaptive RANS k–ω (D-DARK) model is validated with 3 canonical flow geometries: pipe flow, backward-facing step, and flow around an airfoil. For all test cases, the D-DARK model improves agreement with experimental data in comparison to the results from a non-adaptive RANS k–ω model that uses standard values of the closure coefficients. For the pipe flow, adaptation is driven by mean stream-wise velocity data from 42 measurement locations along the pipe radius, and the D-DARK model reduces the average error from 5.2% to 1.1%. For the 2-dimensional backward-facing step, adaptation is driven by mean stream-wise velocity data from 100 measurement locations at 4 cross-sections of the flow. In this case, D-DARK reduces the average error from 40% to 12%. For the NACA 0012 airfoil, adaptation is driven by surface-pressure data at 25 measurement locations. The D-DARK model reduces the average error in surface-pressure coefficients from 45% to 12%.

Li, Z., Zhang, H., Bailey, S. C., Hoagg, J. B., and Martin, A., “A Data-Driven RANS k-ω approach for modeling turbulent flows,” Journal of Computational Physics, vol. 345, 2017, pp. 111–131.



New journal article!

May 17th, 2017

A new journal article was recently published in the International Journal of Heat and Mass Transfer:

Material properties and oxidation behavior of low-density felts used as substrates for conformal carbon/ phenolic ablators were compared with those of a rigid carbon fiber preform used to manufacture heritage lightweight ablators. Synchrotron X-ray micro-tomography measurements were performed to character- ize the materials’ microstructure at the scale of the fibers. Using the tomography voxels as computational grids, tortuosity in the continuum regime, and room temperature conductivity were computed. Micro- scale simulations of the oxidation of carbon fibers were carried out using a random walk model for oxy- gen diffusion and a sticking probability law to model surface reactions. The study shows that, due to a higher porosity and lower connectivity, the felt materials have lower thermal conductivity but a faster recession rate than that of the rigid preform. Challenges associated with computations based on micro-tomography are also discussed.

[1] Panerai, F., Ferguson, J. C., Lachaud, J. R., Martin, A., Gasch, M. J., and Mansour, N. N., “Analysis of rigid and flexible substrates for lightweight ablators based on X-ray micro-tomography,” International Journal of Heat and Mass Transfer, Vol. 108, Part A, May 2017, pp. 801–811.
DOI: 10.1016/j.ijheatmasstransfer.2016.12.048

New journal article!

March 15th, 2017

New article in Aerospace Science and Technology!

Accurate thermodynamic properties for species found in carbon-phenolic gas mixtures are essential in predicting material response and heating of carbon-phenolic heat shields of planetary entry vehicles. A review of available thermodynamic data for species found in mixtures of carbon-phenolic pyrolysis and ablation gases and atmospheres rich with C, H, O, and N such as those of Earth, Mars, Titan, and Venus, is performed. Over 1200 unique chemical species are identified from four widely used thermodynamic databases and a systematic procedure is described for combining these data into a comprehensive model. The detailed dataset is then compared with the Chemical Equilibrium with Applications thermodynamic database developed by NASA in order to quantify the differences in equilibrium thermodynamic properties obtained with the two databases. In addition, a consistent reduction methodology using the mixture thermodynamic properties as an objective function is developed to generate reduced species sets for a variety of temperature, pressure, and elemental composition spaces. It is found that 32 and 23 species are required to model carbon-phenolic pyrolysis gases mixed with air and CO2, respectively, to maintain a maximum error in thermodynamic quantities below 10%.

[1] Scoggins, J. B., Rabinovich, J., Barros-Fernandez, B., Martin, A., Lachaud, J. R., Jaffe, R. L., Mansour, N. N., Blanquart, G., and Magin, T. E., “Thermodynamic properties of equilibrium carbon-phenolic gas mixtures,” Aerospace Science and Technology, Vol. 66, 2017.

9th Ablation Workshop

March 2nd, 2017

Save-the-date! The 9th Ablation Workshop will be held August 30-31, 2017 at Montana State University in beautiful Bozeman, Montana, not far from Yellowstone National Park! The local organizer will be Prof. Tim Minton (Montana State University), and the co-organizer will be Prof. Alexandre Martin (University of Kentucky). E-mail updates in the coming months will provide reminders about abstract submission, registration, and accommodations. As always, you should also keep an eye on the website ( for detailed information. Note that the main two-day meeting will NOT be ITAR restricted, but we plan on having an additional morning session on September 1st for ITAR presentations. If you have any questions, please do not hesitate to contact one of us.

New conference papers!

February 17th, 2017

Two new conference articles from the 55th AIAA Aerospace Sciences Meeting:

[1] Fu, R., Weng, H., Wenk, J. F., and Martin, A., “Development of a coupled elastic solver for ablation problems,” in 55th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2017-0439, Grapevine, TX, Jan. 2017.
doi: 10.2514/6.2017-0439.

[2] Schulz, J. C., Stern, E. C., Muppidi, S., Palmer, G. E., Schroeder, O., and Martin, A., “Development of a three-dimensional, unstructured material response design tool,” in 55th AIAA Aerospace Sciences Meeting, AIAA Paper 2017-0667, 2017.
doi: 10.2514/6.2017-0667.


New journal article!

September 19th, 2016

A new article was recently published in “Learned Publishing”.

Key points
• Publishing articles in predatory or low quality open-access journals has been proven to be easy.
• In the presented case study, the editor replaced the entire submitted manuscript with plagiarized texts, without explicitly informing the authors.
• When strongly motivated to publish, editors and publishers may fraudulently change articles to make them more publishable.
• Replacing the entire content of an article cannot be interpreted as a misguided attempt to improve article quality.
• Plagiarism should not be solely blamed on authors when editors may be the culprits.

[1] Martin, A. and Martin, T., “A not-so-harmless experiment in predatory Open-Access publishing,” Learned Publishing, Vol. 29, No. 4, October 2016.
DOI: 10.1002/leap.1060