Gas Surface Interactions Lab

Publications in Refereed Journals

  1. Fu, R., Weng, H., Wenk, J. F., and Martin, A., “Thermo-mechanical coupling for charring ablators,” Journal of Thermophysics and Heat Transfer, 2017.
    doi: 10.2514/1.T5194
  2. Martin, A., Zhang, H., and Tagavi, K. A., “An introduction to a systematic derivation of surface balance equations without the excruciating pain,” International Journal of Heat and Mass Transfer, vol. 115, Part A, pp. 992–999, 2017.
    doi: 10.1016/j.ijheatmasstransfer.2017.07.078
  3. Li, Z., Zhang, H., Bailey, S. C., Hoagg, J. B., and Martin, A., “A Data-Driven RANS k-ω approach for modeling turbulent flows,” Journal of Computational Physics, vol. 345, 2017, pp. 111–131.
    doi: 10.1016/j.jcp.2017.05.009
  4. Panerai, F., Ferguson, J. C., Lachaud, J. R., Martin, A., Gasch, M. J., and Mansour, N. N., “Analysis of rigid and flexible substrates for lightweight ablators based on x-ray micro-tomography,” International Journal of Heat and Mass Transfer, vol. 108, Part A, pp. 801–811, 2017.
    doi: 10.1016/j.ijheatmasstransfer.2016.12.048.
  5. Scoggins, J. B., Rabinovich, J., Barros-Fernandez, B., Martin, A., Lachaud, J. R., Jaffe, R. L., Mansour, N. N., Blanquart, G., and Magin, T. E., “Thermodynamic properties of equilibrium carbon-phenolic gas mixtures,” Aerospace Science and Technology, vol. 66, pp. 177–192, 2017.
    doi: 10.1016/j.ast.2017.02.025.
  6. Martin, A. and Martin, T., “A not-so-harmless experiment in predatory Open-Access publishing,” Learned Publishing, vol. 29, no. 4, pp. 301–305, 2016.
    doi: 10.1002/leap.1060
  7. Martin, A., Bailey, S. C. C., Panerai, F., Davuluri, R. S. C., Vazsonyi, A. R., Zhang, H., Lippay, Z. S., Mansour, N. N., Inman, J. A., Bathel, B. F., Splinter, S. C., and Danehy, P. M., “Numerical and experimental analysis of spallation phenomena,” CEAS Space Journal, vol. 8, no. 2, 2016.
    doi: 10.1007/s12567-016-0118-4
  8. Panerai, F., White, J. D., Cochell, T. J., Schroeder, O. M., Mansour, N. N., Wright, M. J., and Martin, A., “Experimental measurements of the permeability of fibrous carbon at high temperature,” International Journal of Heat and Mass Transfer, vol. 100, 2016.
    doi: 10.1016/j.ijheatmasstransfer.2016.05.016
  9. Omidy, A. D., Panerai, F., Lachaud, J. R., Mansour, N. N., and Martin, A., “Effects of water phase change on the material response of low-density carbon phenolic ablators,” Journal of Thermophysics and Heat Transfer, vol. 30, no. 2, pp. 473–478, 2016.
    doi: 10.2514/1.T4814
  10. Nouri, N., Panerai, F., Tagavi, K. A., Mansour, N. N., and Martin, A., “Evaluation of the anisotropic radiative conductivity of a low-density carbon fiber material from realistic microscale imaging,” International Journal of Heat and Mass Transfer, vol. 95, pp. 535–539, 2016.
    doi: 10.1016/j.ijheatmasstransfer.2015.12.004
  11. Ferguson, J. C., Panerai, F., Bailey, S. C. C., Lachaud, J. R., Martin, A., and Mansour, N. N., “Modeling the oxidation of low-density carbon fiber material based on micro-tomography,” Carbon, vol. 96, pp. 57–65, 2016.
    doi: 10.1016/j.carbon.2015.08.113
  12. Davuluri, R. S. C., Zhang, H., and Martin, A., “Numerical study of spallation phenomenon in an arc-jet environment,” Journal of Thermophysics and Heat Transfer, vol. 30, no. 1, pp. 32–41 2015.
    doi: 10.2514/1.T4586
  13. Martin, A. and Boyd, I. D., “Modeling of heat transfer attenuation by ablative gasses during the Stardust re-entry,” Journal of Thermophysics and Heat Transfer, vol. 29, no. 3, pp. 450–466, 2015.
    doi: 10.2514/1.T4202
  14. Martin, A., Boyd, I. D., Cozmuta, I., and Wright, M. J., “Kinetic rates for gas phase chemistry of phenolic based carbon ablator decomposition in atmospheric air,” Journal of Thermophysics and Heat Transfer, vol. 29, no. 2, pp. 222–240, 2015.
    doi: 10.2514/1.T4184
  15. Nouri, N. and Martin, A., “Three-dimensional radiation heat transfer model for carbon fiber preforms,” International Journal of Heat and Mass Transfer, vol. 83, pp. 629–635, 2015.
    doi: 10.1016/j.ijheatmasstransfer.2014.12.041
  16. Weng, H., Bailey, S. C. C., and Martin, A., “Numerical study of iso-q sample geometric effects on charring ablative materials,” International Journal of Heat and Mass Transfer, vol. 80, pp. 439–465, 2015.
    doi: 10.1016/j.ijheatmasstransfer.2014.09.040
  17. Weng, H. and Martin, A., “Numerical investigation of thermal response using orthotropic charring ablative material,” Journal of Thermophysics and Heat Transfer, vol. 29, no. 3, pp. 429–438, 2015.
    doi: 10.2514/1.T4576
  18. Weng, H. and Martin, A., “Multi-dimensional modeling of pyrolysis gas transport inside charring ablative materials,” Journal of Thermophysics and Heat Transfer, Vol. 28, No. 4, pp. 583-597, 2014.
    doi: 10.2514/1.T4434
  19. Martin, A. and Boyd, I. D., “Strongly coupled computation of material response and nonequilibrium flow for hypersonic ablation,” Journal of Spacecraft and Rockets, 2014, Vol. 50, No. 4, pp. 583-597, 2014.
    doi: 10.2514/1.A32847
  20. Alkandry, H., Boyd, I. D., and Martin, A., “Comparison of Models for Mixture Transport Properties for Flow Field Simulations of Ablative Heat-Shields,” Journal of Thermophysics and Heat Transfer, Vol. 28, No. 4, pp. 569-582, 2014.
    doi: 10.2514/1.T4233
  21. Panerai, F., Martin, A., Mansour, N. N., Sepka, S. A., and Lachaud, J., “Flow-tube Oxidation Experiments on the Carbon Preform of PICA,” Journal of Thermophysics and Heat Transfer, Vol. 27, No. 2, pp. 181–190, 2014.
    doi: 10.2514/1.T4265
  22. Miller, M. A., Martin, A., and Bailey, S. C. C., “Investigation of the scaling of roughness and blowing effects on turbulent channel flow.” Experiments in Fluids, Vol. 55, No. 1675, 2014.
    doi:10.1007/s00348-014-1675-y
  23. Farbar, E. D., Boyd, I. D., and Martin, A., “Numerical Prediction of Hypersonic Flow Fields Including Effects of Electron Translational Nonequilibrium,” Journal of Thermophysics and Heat Transfer, Vol. 27, No. 4, 2013, pp. 593–606.
    doi: 10.2514/1.T3963
  24. Boyd, I. D., Martin, A., Wiebenga, J. E., and Jenniskens, P., “Hypersonic Flow and Radiation Analysis of the Automated Transfer Vehicle “Jules Verne,” Journal of Spacecraft and Rockets, Vol. 50, No. 1, 2013, pp. 124–136.
    doi: 10.2514/1.A32208
  25. Martin, A., Scalabrin, L. C., and Boyd, I. D., “High-performance modeling of an atmospheric re-entry vehicle,” Journal of Physics: Conference Series, Vol. 341, 2012, Article 012002.
    doi: 10.1088/1742-6596/341/1/012002
  26. Martin, A. and Boyd, I. D., “Non-Darcian behavior of pyrolysis gas in a thermal protection system,” Journal of Thermophysics and Heat Transfer, Vol. 24, No. 1, 2010, pp. 60–68.
    doi: 10.2514/1.44103
  27. Martin, A. and Boyd, I. D., “Variant of the Thomas algorithm for opposed-border tridiagonal systems of linear equations,” International Journal for Numerical Methods in Biomedical Engineering, Vol. 26, No. 6, 2008, pp. 752–759.
    doi: 10.1002/cnm.1172
  28. Martin, A., Reggio, M., and Trépanier, J.-Y., “Numerical solution of axisymmetric multi- species compressible gas flow: Towards improved circuit breaker simulation,” International Journal of Computational Fluid Dynamics, Vol. 22, No. 4, 2008, pp. 259–271.
    doi: 10.1080/10618560701868503
  29. Martin, A., Reggio, M., Trépanier, J.-Y., and Guo, X., “Transient ablation regime in circuit breakers,” Plasma Science and Technology, Vol. 9, No. 6,  2007, pp. 653– 656.
    doi: 10.1088/1009-0630/9/6/02
  30. Maruzewski, P., Martin, A., Reggio, M., and Trépanier, J.-Y., “Simulation of arc-electrode interaction using sheath modeling in SF6 circuit-breakers,” Journal of Physics D: Applied Physics, Vol. 35, No. 9, 2002, pp. 891–899.
    doi: 10.1088/0022-3727/35/9/309

Publications in Refereed Conference Proceedings

  1. Irvan, M. L., Maddox, J. F., Keen, C. B. A., and Martin, A., “Physics-Based Modeling of Fibrous High Porosity Insulation Materials Using Comparative Cut-Bar Experimentation,” 47th AIAA Thermophysics Conference, AIAA Paper 2017-3887, Denver, CO, June 2017.
    doi: 10.2513/2017-3887
  2. Weng, H. and Martin, A., “Development of a Universal Solver and Its Application to Ablation Problems,” 47th AIAA Thermophysics Conference, AIAA Paper 2017-3355, Denver, CO, June 2017.
    doi: 10.2513/2017-3355
  3. Omidy, A. D., Cooper, J. M., Fu, R., Weng, H., and Martin, A., “Development Of An Open-Source Avcoat Material Database, VISTA,” 47th AIAA Thermophysics Conference, AIAA Paper 2017-3356, Denver, CO, June 2017.
    doi: 10.2513/2017-3356
  4. Omidy, A. D., Weng, H., Martin, A., and Gran ̃a-Otero, J. C., “Modeling Gasification of Carbon Fiber Preform in Oxygen-Rich Environments,” 47th AIAA Thermophysics Conference, AIAA Paper 2017-3686, Denver, CO, June 2017.
    doi: 10.2513/2017-3686
  5. Schulz, J. C., Stern, E. C., Muppidi, S., Palmer, G. E., Schroeder, O., and Martin, A., “Development of a three-dimensional, unstructured material response design tool,” 55th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2017-0667, Grapevine, TX, Jan 2017.
    doi: 10.2513/2017-0667
  6. Fu, R., Weng, H., Wenk, J. F., and Martin, A., “Development of a coupled elastic solver for ablation problems,” in 55th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2017-0439, Grapevine, TX, Jan. 2017.
    doi: 10.2514/6.2017-0439.
  7. Fu, R., Weng, H., Wenk, J. F., and Martin, A., “Application of a new thermo-mechanical coupling solver for ablation,” 46th AIAA Thermophysics Conference, AIAA Paper 2016-4432, Washington, D.C., 2016.
    doi: 10.2514/6.2016-4432
  8. Winter, M., Butler, B. D., Diao, Z., Panerai, F., Martin, A., Bailey, S. C., Danehy, P. M., and Splinter, S., “Characterization of Ablation Product Radiation Signatures of PICA and FiberForm,” 46th AIAA Thermophysics Conference, AIAA Paper 2016-3233, Washington, D.C., 2016.
    doi: 10.2514/6.2016-3233
  9. Cooper, J. M., Stieha, J. K., Fowler, A. M., Wright, N. A., and Martin, A., “Kentucky Re-entry Universal Payload System,” 54th AIAA Aerospace Sciences Meeting, AIAA Paper 2016-2192, San Diego, CA, 2016.
    doi: 10.2514/6.2016-2192
  10. Butler, B. D., Winter, M., Panerai, F., Martin, A., Bailey, S. C., Stackpoole, M., Danehy, P., and Splinter, S., “Characterization of candidate materials for remote recession measurements of ablative heat shield materials,” 54th AIAA Aerospace Sciences Meeting, AIAA Paper 2016-1516, San Diego, CA, 2016.
    doi: 10.2514/6.2016-1516
  11. Davuluri, R. S. C., Zhang, H., and Martin, A., “Effects of spalled particles thermal degradation on a hypersonic flow field environment,” 54th AIAA Aerospace Sciences Meeting, AIAA Paper 2016-0248, San Diego, CA, 2016.
    doi: 10.2514/6.2016-0248
  12. Li, Z., Zhang, H., Hoagg, J. B., Bailey, S. C. C., and Martin, A., “Turbulence simulation using direct gradient adaptive k-w model,” 54th AIAA Aerospace Sciences Meeting, AIAA Paper 2016-0587, San Diego, CA, 2016.
    doi: 10.2514/6.2016-0587
  13. Borchetta, C. G., Martin, A., and Bailey, S. C. C., “Near-surface flow structure over a dimpled surface with blowing,” 68th Annual Meeting of the APS Division of Fluid Dynamics, Vol. 60, Bulletin of the American Physical Society, Boston, MA, November 2015,
    Abstract ID: BAPS.2015.DFD.G21.2.
  14. Martin, A., Bailey, S. C. C., Panerai, F., Davuluri, R. S. C., Vazsonyi, A. R., Zhang, H., Lippay, Z. S., Mansour, N. N., Inman, J. A., Bathel, B. F., Splinter, S. C., and Danehy, P. M., “Preliminary numerical and experimental analysis of the spallation phenomenon,” 8th European Symposium on Aerothermodynamics for Space Vehicles, Paper No. 88621, Lisbon, Portugal, 2015.
    doi: 10.13140/RG.2.1.1612.4328
  15. Panerai, F., Ferguson, J. C., Lachaud, J. R., Martin, A., Gasch, M. J., and Mansour, N. N., “Analysis of fibrous felts for flexible ablators using synchrotron hard X-ray micro-tomography,” 8th European Symposium on Aerothermodynamics for Space Vehicles, Paper No. 89747, Lisbon, Portugal, 2015.
    doi: 10.13140/RG.2.1.2661.0084
  16. Smith, D. L., Omidy, A. D., Weng, H., White, T. R., and Martin, A., “Effects of water presence on low-temperature phenomenon in PICA,” 45th AIAA Thermophysics Conference, AIAA Paper 2015-2505, Dallas, TX, 2015.
    doi: 10.2514/6.2015-2505
  17. Smith, D. L., White, T. R., and Martin, A., “Comparisons of PICA in-depth material performance and ablator response modeling from MEDLI arc jet tests,” 45th AIAA Thermophysics Conference, AIAA Paper 2015-2664, Dallas, TX, 2015.
    doi: 10.2514/6.2015-2664
  18. Weng, H. and Martin, A., “Numerical Investigation of Geometric Effects of Stardust Return Capsule Heat Shield,” 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, 2015.
    doi: 10.2514/6.2015-0211
  19. Helvey, J. P., Borchetta, C. G., Miller, M. A., Martin, A., and Bailey, S. C. C., “Investigation of Wall Shear Stress Behavior for Rough Surfaces with Blowing,” 67th Annual Meeting of the APS Division of Fluid Dynamics, Vol. 59, No. 18, Bulletin of the American Physical Society, San Francisco, CA, 2014,
    Abstract ID: BAPS.2014.DFD.H26.8.
  20. Weng, H. and Martin, A., “Numerical Investigation of Pyrolysis Gas Blowing Pattern and Thermal Response using Orthotropic Charring Ablative Material,” 11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, AIAA Paper 2014-2121, Atlanta, GA, 2014.
    doi: 10.2514/6.2014-2121
  21. Davuluri, R. and Martin, A., “Numerical study of spallation phenomenon in an arc-jet environment,” 11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, AIAA Paper 2014-2249, Atlanta, GA, 2014.
    doi: 10.2514/6.2014-2249
  22. Panerai, F., Lachaud, J., Mansour, N., and Martin, A., “Numerical and experimental study of carbon fiber oxidation,” 52nd AIAA Aerospace Sciences Meeting, AIAA Paper 2014-1208, National Harbor, MD, 2014.
    doi: 10.2514/6.2014-1208
  23. Zhang, H.-B., Weng, H., and Martin, A., “Simulation of Flow-tube Oxidation on the Carbon Preform of PICA,” 52nd AIAA Aerospace Sciences Meeting, AIAA Paper 2014- 1209, National Harbor, MD, 2014.
    doi: 10.2514/6.2014-1209
  24. Miller, M. A., Martin, A., and Bailey, S. C. C., “Experimental Investigation of Blowing Effects on Turbulent Flow Over a Rough Surface,” 8th International Symposium on Turbulence and Shear Flow Phenomena, Poitiers, France, 2013.
    url: http://www.tsfp-conference.org/images/stories/proceedings/2013/v3/tsfc.pdf
  25. Alkandry, H., Boyd, I. D., and Martin, A., “Coupled Flow Field Simulations of Charring Ablators with Nonequilibrium Surface Chemistry,” 44th AIAA Thermophysics Conference, AIAA Paper 2013-2634, San Diego, CA, 2013.
    doi: 10.2514/6.2013-2634
  26. Mansour, N. N., Panerai, F., Martin, A., Parkinson, D. Y., MacDowell, A., Haboub, A., Sandstrom, T. A., Fast, T., Vignoles, G. L., and Lachaud, J., “A New Approach To Light-Weight Ablators Analysis: From Micro-Tomography Measurements to Statical Analysis and Modeling,” 44th AIAA Thermophysics Conference, AIAA Paper 2013-2768, San Diego, CA, 2013.
    doi: 10.2514/6.2013-2768
  27. Panerai, F., Martin, A., Mansour, N. N., Sepka, S. A., and Lachaud, J., “Flow-tube Oxidation Experiments on the Carbon Preform of PICA,” 44th AIAA Thermophysics Conference, AIAA Paper 2013-2769, San Diego, CA, 2013.
    doi: 10.2514/6.2013-2769
  28. Martin, A., “Volume averaged modeling of the oxidation of porous carbon fiber material,” 44th AIAA Thermophysics Conference, AIAA Paper 2013-2636, San Diego, CA, 2013.
    doi: 10.2514/6.2013-2636
  29. Weng, H. and Martin, A., “Multi-dimensional modeling pyrolysis gas flow inside charring ablators,” 44th AIAA Thermophysics Conference, AIAA Paper 2013-2635, San Diego, CA, 2013.
    doi: 10.2514/6.2013-2635
  30. Miller, M. A., Bailey, S. C. C., and Martin, A., “Investigation of Turbulent Structure Modification by Momentum Injection Into Turbulent Flow Over a Rough Surface,” 51st AIAA Aerospace Sciences Meeting, AIAA Paper 2013-534, Grapevine, TX, 2013.
    doi: 10.2514/6.2013-534
  31. Martin, A., “Modeling of chemical non-equilibrium effects in a charring ablator,” 51st AIAA Aerospace Sciences Meeting, AIAA Paper 2013-0301, Grapevine, TX, 2013.
    doi: 10.2514/6.2013-301
  32. Alkandry, H., Boyd, I. D., and Martin, A., “Comparison of Models for Mixture Transport Properties for Numerical Simulations of Ablative Heat-Shields,” 51st AIAA Aerospace Sciences Meeting, AIAA Paper 2013-0303, Grapevine, TX, 2013.
    doi: 10.2514/6.2013-303
  33. Miller, M. A., Martin, A., and Bailey, S. C. C., “Investigation of Turbulence Modification by Momentum Injection Into Turbulent Flow Over a Rough Surface,” 65th Annual Meeting of the APS Division of Fluid Dynamics, Vol. 57, Bulletin of the American Physical Society, San Diego, USA, 2012,
    Abstract ID: BAPS.2012.DFD.L23.3.
  34. Weng, H., Martin, A., Khan, O. U., and Huai-Bao, Z., “Multi-dimensional modeling of charring ablators,” 43rd AIAA Thermophysics Conference, AIAA Paper 2012-2748, New Orleans, LA, June 25-28 2012.
    doi: 10.2514/6.2012-2748
  35. Martin, A. and Boyd, I. D., “Modeling of heat transfer attenuation by ablative gasses during Stardust re-entry,” 50th AIAA Aerospace Sciences Meeting, AIAA Paper 2012- 0814, Nashville, TN, 2012.
    doi: 10.2514/6.2012-814
  36. Khan, O. U. and Martin, A., “Effect of Applied Magnetic Field on Shock Boundary Layer Interaction,” 50th AIAA Aerospace Sciences Meeting, AIAA Paper 2012-0355, Nashville, TN, 2012.
    doi: 10.2514/6.2012-355
  37. Farbar, E. D., Boyd, I. D., and Martin, A., “Modeling Ablation of Charring Heat Shield Materials For Non-Continuum Hypersonic Flow,” 50th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2012-0532, Nashville, TN, 2012.
    doi: 10.2514/6.2012-532
  38. Martin, A., Farbar, E. D., and Boyd, I. D., “Numerical modeling of the CN spectral emission of the Stardust re-entry vehicle,” 42nd AIAA Thermophysics Conference, AIAA Paper 2011-3125, Honolulu, HI, 2011.
    doi: 10.2514/6.2011-3125
  39. Farbar, E. D., Boyd, I. D., Kim, M., and Martin, A., “Investigation of the Effects of Electronic-Electron Translational Nonequilibrium on Numerical Predictions of Hypersonic Flowfields,” 42nd AIAA Thermophysics Conference, AIAA Paper 2011-3136, Honolulu, HI, 2011.
    doi: 10.2514/6.2011-3136
  40. Martin, A. and Boyd, I. D., “CFD Implementation of a novel carbon-phenolic-in-air chemistry model for atmospheric re-entry,” 49th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2011-143, Orlando, FL, 2011.
    doi: 10.2514/6.2011-143
  41. Martin, A. and Boyd, I. D., “Mesh tailoring for strongly coupled computation of ablative material in nonequilibrium hypersonic flow,” 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, AIAA Paper 2010-5062, Chicago, IL, 2010.
    doi: 10.2514/6.2010-5062
  42. Martin, A. and Boyd, I. D., “Assessment of carbon-phenolic-in-air chemistry models for atmospheric re-entry,” 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, AIAA Paper 2010-4656, Chicago, IL, 2010.
    doi: 10.2514/6.2010-4656
  43. Martin, A., Boyd, I. D., Cozmuta, I., and Wright, M. J., “Chemistry model for ablating carbon-phenolic material during atmospheric re-entry,” 48th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2010-1175, Orlando, FL, 2010.
    doi: 10.2514/6.2010-1175
  44. Martin, A. and Boyd, I. D., “Strongly coupled computation of material response and nonequilibrium flow for hypersonic ablation,” 41th AIAA Thermophysics Conference, AIAA Paper 2009-3597, San Antonio, TX, 2009.
    doi: 10.2514/6.2009-3597
  45. Martin, A. and Boyd, I. D., “Implicit implementation of material response and moving meshes for hypersonic re-entry ablation,” 47th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2009-0670, Orlando, FL, 2009.
    doi: 10.2514/6.2009-670
  46. Martin, A. and Boyd, I. D., “Simulation of pyrolysis gas within a thermal protection system,” 40th AIAA Thermophysics Conference, AIAA Paper 2008-3805, Seattle, WA, 2008.
    doi: 10.2514/6.2008-3805
  47. Martin, A., Reggio, M., Trépanier, J.-Y., and Guo, X., “Transient ablation regime in circuit-breakers,” XVI International Conference on Gas Discharges and their Applications, Xi’an Jiaotong University, Xi’an, People’s Republic of China, 2006.
    doi: 10.13140/2.1.2298.4002
  48. Martin, A., Reggio, M., and Trépanier, J.-Y., “Simulation of multi-species gas flows in circuit-breakers with arc-wall interactions,” XV International Conference on Gas Discharges and their Applications, Universite Paul Sabatier, Toulouse, France, 2004, pp. 33–36.
    doi: 10.13140/2.1.3346.9769
  49. Martin, A., Reggio, M., and Trépanier, J.-Y., “Solution of Multi-species Real Gas Flows with Electric Arc and Wall Ablation,” 12th Annual Conference of the CFD Society of Canada, National Research Council Canada, Ottawa, Canada, 2004.
    doi: 10.13140/2.1.4002.3369
  50. Martin, A., Reggio, M., and Trépanier, J.-Y., “Simulation of Inviscid Multi-Species Plasma Flow,” Computational Technologies for Fluid/Thermal/Structural/Chemical Systems with Industrial Applications, Volume 1, Pressure Vessel and Piping Divison, ASME, 2002, pp. 147–154.
    doi: 10.1115/PVP2002-1546
  51. Martin, A., Reggio, M., and Trépanier, J.-Y., “Simulation of inviscid multi-species plasma flow,” 9th Annual Conference of the CFD Society of Canada, Vol. 1, University of Waterloo, Waterloo, Canada, pp. 459–464, 2001.
    doi: 10.13140/2.1.4526.6248
  52. Martin, A., Reggio, M., and Trépanier, J.-Y., “NEPTUNE: Un logiciel pour les écoulements de rivière,” 8th Annual Conference of the CFD Society of Canada, Vol. 1, CERCA, Montréal, Canada, pp. 199–205 2000.
    doi: 10.13140/2.1.3478.0483

Thesis

  1. Smith, D. L., Comparisons of ablator experimental performance to response modeling and effects of water phase transition in porous TPS materials, M.Sc. Thesis, University of Kentucky, Lexington, KY, December 2016.
    http://uknowledge.uky.edu/me_etds/83/
  2. Nouri, N., Radiative conductivity analysis of low-density fibrous materials, M.Sc. Thesis, University of Kentucky, Lexington, KY, July 2015.
    http://uknowledge.uky.edu/me_etds/66
  3. Davuluri, R. S. C., Modeling of Spallation Phenomenon in an arc-jet environment, M.Sc. Thesis, University of Kentucky, Lexington, KY, May 2015.
    http://uknowledge.uky.edu/me_etds/63
  4. Zhang, H., Coupling of high-temperature gas and porous media flow, Ph.D. Thesis, University of Kentucky, Lexington, KY, July 2015.
    http://uknowledge.uky.edu/me_etds/64
  5. Weng, H., Multidimensional modeling of pyrolysis gas transport inside orthotropic charring ablators, Ph.D. Thesis, University of Kentucky, Lexington, KY, December 2014.
    http://uknowledge.uky.edu/me_etds/50

Reports

  1. Omidy, A. D., Panerai, F., Lachaud, J. R., Mansour, N. N., Cozmuta, I., and Martin, A., “Code-to-Code Comparison, and Material Response Modeling of Stardust and MSL using PATO and FIAT,” NASA Ames Research Center, Moffett Field, CA, Contractor Report NASA/CR-2015-218960, 2015.
    HDL: 2060/201600069632060
  2. Martin, A., “Modeling of pyrolysis gas in charring ablators,” STO/VKI Lecture Series on Radiation and gas-surface interaction phenomena in high-speed re-entry, STO-EN- AVT-218, Paper 3, 2014.
    URL: http://www.cso.nato.int/Pubs/rdp.asp?RDP=STO-EN-AVT-218

Other

  1. Burt, J. M. and Martin, A., “Thermophysics advances in many area,” Aerospace America, Vol. 54, No. 11, December 2016, pp. 24.
  2. Brandis, A. M., Martin, A., Schwartzentruber, T. E., Martin, M. J., Feldman, J., and Prabhu, D. K., “Preparing thermophysics for new missions,” Aerospace America, vol. 53, no. 11, p. 24, 2015.

Share